Year 5 Curriculum Map <u>Autumn 1</u> | Year 5 - Living things and their habitats | | | | | | |---|---|--|--|--|--| | Lesson Intention | National Curriculum Reference | Scientific | Rocket Words | Resources | | | Understand the life process of a plant | Describe the life process of reproduction in some plants and animals | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary reproduction asexual fertilisation tuber genes | | Class presentation, rooting powder,
pots, a healthy plant (strawberry,
tomato, basil or chilli) and soil | | | Understand the life cycles of mammals | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | pouch
mammary glands
placental mammal
monotreme mammal
marsupial | Class presentation and mammal types sorting cards | | | Compare the life cycles of insects and amphibians | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | metamorphosis
caterpillar
amphibian
larva
pupa | Class presentation and split pins | | | Understand the life cycle of birds and reptiles | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | egg
fledgling
egg tooth
hatch
embryo | Class presentation, eggs and toothpicks | | | Know about the life and work
of Jane Goodall and David
Attenborough | Describe the life process of reproduction in some plants and animals | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | documentary
naturalist
primatologist
endangered
natural sciences | Class presentation and research
devices (laptops/ipads) | | | Research and present the life cycle of a creature | Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Identifying scientific evidence that has been used to support or refute ideas or arguments | living organism
reproduction
life cycle
vertebrate
warm-blooded | Class presentation and research
devices (laptops/ipads) | | #### <u>Autumn 2</u> | | Year 5 – Animals, including humans | | | | | | |--|---|--|--|---|--|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry | Rocket Words | Resources | | | | Identify the key stages of
a mammal's life cycle | Describe the changes as humans develop to old age | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs adolescent puberty reproduce | | Scissors, handout (on thin card), pen
and pencils, split pins | | | | Explore the gestation periods of mammals | Describe the changes as humans develop to old age | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | gestation
pregnant
duration
extreme
breeding | Sticky notes, scissors, pens/pencils,
computers/tablets for research | | | | Learn about foetal
development | Describe the changes as humans develop to old age | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | womb
umbilical chord
embryo
trimester
midwife | Pencil, graph paper, ruler, coloured pencils | | | | Investigate the hand
span of different aged
children | Describe the changes as humans develop to old age | Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | growth spurt
childhood
motor skills
milk teeth
constant | Ruler, tape measure, pens/pencils,
paper | | | | Learn about the changes experienced during puberty | Describe the changes as humans develop to old age | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | adolescence
puberty
hormones
mood swing
develop | Large paper/wallpaper, sticky tape,
pens/pencils | | | | Describe the changes
humans may experience
during adulthood and
old age | Describe the changes as humans develop to old age | Identifying scientific evidence that has been used to support or refute ideas or arguments | lifestyle
keratin
elasticity
cataracts
neurodegenerative | Pens, pencils, computers/tablets | | | ## Spring 1 | Year 5 – Properties of materials | | | | | | |--|---|---|---|---|--| | Lesson Intention | National Curriculum Reference Scientific Enquiry Rocket Words | | Resources | | | | Exploring properties of materials | Compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | conductive
magnetic
durable
transparent
versatile | 10 sample pieces of material - wood,
paper, card, plastic, string, wool,
rubber, different metals, clay, pen and
pencils, electrical equipment to make
circuits (with a bulb), magnets, torch | | | Explore thermal conductors and thermal insulators | Compare and group together everyday materials based on evidence from comparative and fair tests, including their conductivity of heat Give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic | Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | thermal
conduction
molecules
degrees Celsius (°C)
insulator | paper cups, a variety of materials to
wrap up the cup, for instance, cling
film, foil, paper, felt, cotton, sticky tape,
thermometer, warm water, stopwatch | | | Explore the hardness of materials | Compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | hardness
force
iron
steel
stone | granite tile, ceramic tile, hardwood,
softwood, slate, different stones,
plastic, metal, card, coin and nail | | | Discover materials
that become
soluble in water | Know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution | Planning different types of scientific enquiries to
answer questions, including recognising and
controlling variables where necessary | dissolve
solute
insoluble
soluble
solvent | a range of substances to test if they
dissolve, for instance, sand, sugar,
salt, flour, wax candles, coffee, jam,
butter, chalk, jelly, pepper, measuring
spoon, beakers/cup, water | | | Investigate the solubility of materials | Know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution | Using test results to make predictions to set up further comparative and fair tests | solute
solvent
solution
substance
saturation | a variety of solutes (salt, sugar, jelly,
coffee), beakers, water | | | Explore how
mixtures could be
separated by
filtering, sieving,
evaporating or
magnets | Use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering, sieving and evaporating | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | pure substance
mixture
filtering
sieving
evaporation | sand, sawdust, gravel, metal nuts,
marbles, flour, beakers or containers,
filter paper, sieve, colander, magnets | | ## Spring 2 | Year 5 – Changes of materials | | | | | |--|--|--|--|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry | Rocket Words | Resources | | Use evaporation to recover the solute from a solution | Describe how to recover a substance from a solution | Reporting and presenting findings from enquiries, including conclusions | pure substance
solute
solvent
solution
evaporate | 1 large clear bottle filled with pure water labelled
"A", 1 large clear bottle filled with salt water
labelled "B" (30g of table salt in 150 ml of water),
teaspoons, small containers such as foil cake
cases to place liquid in, labels, access to an oven
(200 °C for 20 minutes will evaporate 3 teaspoons
of water and leave salt) or warm place. | | Recognise and describe reversible changes | Demonstrate that dissolving, mixing and changes of state are reversible changes | Reporting and presenting findings
from enquiries, including
conclusions, in oral and written
forms | reversible
mixture
physical change
melting
evaporate | Some chocolate that has been melted into a different shape, small toys frozen in some ice, sugar dissolved in water in a bottle, rice and sugar mixed together in a jar. Optional- to reverse changes: heat source and mould to re- melt chocolate and ice and evaporate water, sieve. | | Observe chemical reactions and describe how we know new materials are made | Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | irreversible
chemical change
compare
effervescence
product | Water, fizzing tablet (such as berroca or alka
seltzer), vinegar, bicarbonate of soda, candle,
matches, red cabbage indicator*, soapy
water, water, milk, small bottles for liquids, small
containers (small aluminium pie cases work well) | | Investigate rusting reactions | Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible | Planning different types of scientific enquiry to answer questions, including recognising and controlling variables where necessary | fair test
variable
control variable
corrosion
rusting | Small iron nails, test tubes or other small
containers, water, salty water, other liquids
(lemon juice, cola etc) oil, paint or petroleum jelly | | Investigate burning reactions | Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning. | Identifying scientific evidence that has been used to support or refute ideas or arguments | combustion
fuel
oxygen
extinguish
smother | Tea light, matches, beaker, vinegar, bicarbonate of soda | | Investigate chemical reactions - acids and bicarbonate of soda | Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated the action of acid on bicarbonate of soda | Using test results to make predictions to set up further comparative and fair tests | reaction predict acid bicarbonate of soda carbon dioxide | Bicarbonate of soda, container with lid such as plastic egg or film canister, small containers to test substances in (test tubes or small foil containers), liquids (water, vinegar, cola, lemon juice), plastic spoons, pipettes | ### Summer 1 | | Year 5 – Earth and space | | | | | |---|---|---|---|---|--| | Lesson Intention | National Curriculum Reference | Scientific Enquiry Covered | Rocket Words Covered | Resources Needed | | | Explore the solar
system and its
planets | Describe the Sun, Earth and Moon as approximately spherical bodies | Identifying scientific evidence that has been used to support or refute ideas or arguments Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | terrestrial planet
gas giant planets
Solar System
spherical
orbit | Class presentation, 9 balls (one for the Sun) and a measuring trundle | | | Understand the
heliocentric model
of the solar system | Describe the movement of the Earth
and other planets relative to the Sun
in the solar system | Identifying scientific evidence that has been used to support or refute ideas or arguments | astronomy
heliocentric
geocentric
dwarf planet
orbit | Class presentation, pictures of each
planet (from last lesson), newspaper, 9
balloons/balls, oill, PVA glue, a bowl,
water, paint, paintbrushes and string | | | Explain the Earth's movement in space | Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky | Reporting and presenting findings from enquiries - including conclusions, causal relationships and explanations of and a degree of trust in results - in oral and written forms such as displays and other presentations | axis
poles
season
hemisphere
orbit | Class presentation, a torch, a globe,
playdoh and kebab skewers or cocktail
sticks | | | Explain the Earth's rotation and night and day | Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky | Using test results to make predictions to set up further comparative and fair tests | sundial
time zone
gnomon
dial
shadow | Class presentation, card, scissors, a compass, glue, long wooden kebab skewers and time zone data | | | Explain the
movement of the
Moon | Describe the movement of the Moon relative to the Earth | Identifying scientific evidence that has been used to support or refute ideas or arguments | moon phase
waxing
waning
eclipse | Class presentation, pinwheel outlines,
scissors, split pins, a globe, golf balls
and a torch | | | Design a planet
using knowledge
gained | Describe the Sun, Earth and Moon as approximately spherical bodies | Reporting and presenting findings from enquiries | rocky planet
gas planet
moon
orbit
solar system | Class presentation, felt tips, coloured pencils, paint or digital media | | #### Summer 2 | | Year 5 – Forces | | | | | | |--|---|--|---|---|--|--| | Lesson Intention | National Curriculum
Reference | Scientific Enquiry | Rocket Words | Resources | | | | Explore gravity and
the life and work of
Isaac Newton | Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object | Identifying scientific evidence that has been used to support or refute ideas or arguments | Sir Isaac Newton
gravity
astronomy
weight
mass | 1m ruler/tape measure, weighing scales, variety of balls
(tennis ball, soft ball, marble, hockey ball etc), pencil, 2
sheets of paper, stopwatch | | | | Examine the connection between air resistance and parachutes | Identify the effects of air resistance, water resistance and friction, that act between moving surfaces | Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | Galileo Galilei
air resistance
opposing
streamlined
parachute | feather, tennis ball, small plastic toys/weights,
stopwatches, variety of materials to test (different types of
papers, plastic bags, bin bags, variety of materials),
rulers, hole punch, string, calculators | | | | Explore factors which affect an object's ability to resist water | Identify the effects of air resistance, water resistance and friction, that act between moving surfaces | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | water resistance
streamlined
upthrust
buoyant
sink | small object (such as a marble, or penny), large clear
container filled with water, mini whiteboard, modelling
clay, water, variety of containers (such as large bottles
with the tops cut off, or large measuring cylinders),
weighing scales | | | | Investigate the effects of friction on different surfaces | Identify the effects of air resistance, water resistance and friction, that act between moving surfaces | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | friction
resistance
lubricant
Newton meter
Newton | a variety of surfaces (different carpets or carpet tiles, variety of wooden floors, tarmac/playground surface), trainer, Newton meter, ruler, weight Alternatively, children could cover a plank of wood with different surfaces (such as sandpaper, a towel, tinfoil, lino, carpet, corrugated cardboard, bubble wrap etc.), squared paper | | | | Investigate
mechanisms - levers
and pulleys | Recognise that some
mechanisms including
levers, pulleys and gears
allow a smaller force to
have a greater effect | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations | lever
load
pivot
fulcrum
pulley | mini whiteboards, ball, a load to lift per child (weights/1
pint milk bottle/bag of sand etc.), materials to create a
pulley - string, cotton reels, dowel, wheels, cardboard | | | | Investigate
mechanisms - gears | Recognise that some
mechanisms including
levers, pulleys and gears
allow a smaller force to
have a greater effect | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | mechanism
gear
mesh
rack and pinion
bevel gear | strong cardboard, lolly sticks, paper straws, sticky tape,
thin dowel/cocktail sticks, plasticine, sticky tape, glue,
compass, scissors | | |